A Review on Antibacterial, Antiviral, and Antifungal Activity of Curcumin (2024)

1. Ammon HPT, Wahl MA. Pharmacology of Curcuma longa. Planta Medica. 1991;57(1):1–7. [PubMed] [Google Scholar]

2. Lai PK, Roy J. Antimicrobial and chemopreventive properties of herbs and spices. Current Medicinal Chemistry. 2004;11(11):1451–1460. [PubMed] [Google Scholar]

3. Maheshwari RK, Singh AK, Gaddipati J, Srimal RC. Multiple biological activities of curcumin: a short review. Life Sciences. 2006;78(18):2081–2087. [PubMed] [Google Scholar]

4. Hayakawa H, Minanyia Y, Ito K, Yamamoto Y, f*ckuda T. Difference of curcumin content in Curcuma longa L., (Zingiberaceae) caused by Hybridization with other Curcuma species. American Journal of Plant Sciences. 2011;2(2):111–119. [Google Scholar]

5. Anand P, Nair HB, Sung B, et al. Design of curcumin-loaded PLGA nanoparticles formulation with enhanced cellular uptake, and increased bioactivity in vitro and superior bioavailability in vivo. Biochemical Pharmacology. 2010;79(3):330–338. [PMC free article] [PubMed] [Google Scholar] Retracted

6. Araújo CAC, Leon LL. Biological activities of Curcuma longa L. Memorias do Instituto Oswaldo Cruz. 2001;96(5):723–728. [PubMed] [Google Scholar]

7. Rudrappa T, Bais HP. Curcumin, a known phenolic from Curcuma longa, attenuates the virulence of Pseudomonas aeruginosa PAO1 in whole plant and animal pathogenicity models. Journal of Agricultural and Food Chemistry. 2008;56(6):1955–1962. [PubMed] [Google Scholar]

8. LaColla P, Tramontano E, Musiu C, Marongiu ME, Novellino E, Greco G. Curcumin-like derivatives with potent activity against HIV-1 integrase: synthesis, biological evaluation and molecular modeling. Antiviral Research. 1998;37(3):57–57. [Google Scholar]

9. Anand P, Kunnumakkara AB, Newman RA, Aggarwal BB. Bioavailability of curcumin: problems and promises. Molecular Pharmaceutics. 2007;4(6):807–818. [PubMed] [Google Scholar]

10. Ammayappan L, Jeyakodi Moses J. Study of antimicrobial activity of aloevera, chitosan, and curcumin on cotton, wool, and rabbit hair. Fibers and Polymers. 2009;10(2):161–166. [Google Scholar]

11. Han S, Yang Y. Antimicrobial activity of wool fabric treated with curcumin. Dyes and Pigments. 2005;64(2):157–161. [Google Scholar]

12. Varaprasad K, Vimala K, Ravindra S, Narayana Reddy N, Venkata Subba Reddy G, Mohana Raju K. Fabrication of silver nanocomposite films impregnated with curcumin for superior antibacterial applications. Journal of Materials Science: Materials in Medicine. 2011;22(8):1863–1872. [PubMed] [Google Scholar]

13. Liu CH, Huang HY. Antimicrobial activity of curcumin-loaded myristic acid microemulsions against Staphylococcus epidermidis. Chemical and Pharmaceutical Bulletin. 2012;60(9):1118–1124. [PubMed] [Google Scholar]

14. Wise R, Hart T, Cars O, et al. Antimicrobial resistance. Is a major threat to public health. British Medical Journal. 1998;317(7159):609–610. [PMC free article] [PubMed] [Google Scholar]

15. Niamsa N, Sittiwet C. Antimicrobial activity of Curcuma longa aqueous extract. Journal of Pharmacology and Toxicology. 2009;4(4):173–177. [Google Scholar]

16. Ungphaiboon S, Supavita T, Singchangchai P, Sungkarak S, Rattanasuwan P, Itharat A. Study on antioxidant and antimicrobial activities of turmeric clear liquid soap for wound treatment of HIV patients. Songklanakarin Journal of Science and Technology. 2005;27(2):269–578. [Google Scholar]

17. Lawhavinit O-A, Kongkathip N, Kongkathip B. Antimicrobial activity of curcuminoids from Curcuma longa L. on pathogenic bacteria of shrimp and chicken. Kasetsart Journal—Natural Science. 2010;44(3):364–371. [Google Scholar]

18. Hosny IM, El Kholy WI, Murad HA, El Dairouty RK. Antimicrobial activity of Curcumin upon pathogenic microorganisms during manufacture and storage of a novel style cheese ‘Karishcum’ Journal of American Science. 2011;7:611–618. [Google Scholar]

19. Negi PS, Jayaprakasha GK, Rao LJM, Sakariah KK. Antibacterial activity of turmeric oil: a byproduct from curcumin manufacture. Journal of Agricultural and Food Chemistry. 1999;47(10):4297–4300. [PubMed] [Google Scholar]

20. Mun SH, Joung DK, Kim YS, et al. Synergistic antibacterial effect of curcumin against methicillin-resistant Staphylococcus aureus. Phytotherapy Research. 2013;19(7):599–604. [Google Scholar]

21. Tajbakhsh S, Mohammadi K, Deilami I, et al. Antibacterial activity of indium curcumin and indium diacetylcurcumin. African Journal of Biotechnology. 2008;7(21):3832–3835. [Google Scholar]

22. Rai D, Singh JK, Roy N, Panda D. Curcumin inhibits FtsZ assembly: an attractive mechanism for its antibacterial activity. Biochemical Journal. 2008;410(1):147–155. [PubMed] [Google Scholar]

23. Kaur S, Modi NH, Panda D, Roy N. Probing the binding site of curcumin in Escherichia coli and Bacillus subtilis FtsZ—a structural insight to unveil antibacterial activity of curcumin. European Journal of Medicinal Chemistry. 2010;45(9):4209–4214. [PubMed] [Google Scholar]

24. Li CJ, Zhang LJ, Dezube BJ, Crumpacker CS, Pardee AB. Three inhibitors of type 1 human immunodeficiency virus long terminal repeat-directed gene expression and virus replication. Proceedings of the National Academy of Sciences of the United States of America. 1993;90(5):1839–1842. [PMC free article] [PubMed] [Google Scholar]

25. Barthelemy S, Vergnes L, Moynier M, Guyot D, Labidalle S, Bahraoui E. Curcumin and curcumin derivatives inhibit Tat-mediated transactivation of type 1 human immunodeficiency virus long terminal repeat. Research in Virology. 1998;149(1):43–52. [PubMed] [Google Scholar]

26. Sui Z, Salto R, Li J, Craik C, Ortiz de Montellano PR. Inhibition of the HIV-1 and HIV-2 proteases by curcumin and curcumin boron complexes. Bioorganic & Medicinal Chemistry. 1993;1(6):415–422. [PubMed] [Google Scholar]

27. Mazumder A, Raghavan K, Weinstein J, Kohn KW, Pommier Y. Inhibition of human immunodeficiency virus type-1 integrase by curcumin. Biochemical Pharmacology. 1995;49(8):1165–1170. [PubMed] [Google Scholar]

28. Balasubramanyam K, Varier RA, Altaf M, et al. Curcumin, a novel p300/CREB-binding protein-specific inhibitor of acetyltransferase, represses the acetylation of histone/nonhistone proteins and histone acetyltransferase-dependent chromatin transcription. The Journal of Biological Chemistry. 2004;279(49):51163–51171. [PubMed] [Google Scholar]

29. James JS. Curcumin: clinical trial finds no antiviral effect. AIDS Treatment News. 1996;(242):1–2. [PubMed] [Google Scholar]

30. Chen D-Y, Shien J-H, Tiley L, et al. Curcumin inhibits influenza virus infection and haemagglutination activity. Food Chemistry. 2010;119(4):1346–1351. [Google Scholar]

31. Zandi K, Ramedani E, Mohammadi K, et al. Evaluation of antiviral activities of curcumin derivatives against HSV-1 in Vero cell line. Natural Product Communications. 2010;5(12):1935–1938. [PubMed] [Google Scholar]

32. Kutluay SB, Doroghazi J, Roemer ME, Triezenberg SJ. Curcumin inhibits herpes simplex virus immediate-early gene expression by a mechanism independent of p300/CBP histone acetyltransferase activity. Virology. 2008;373(2):239–247. [PMC free article] [PubMed] [Google Scholar]

33. Bourne KZ, Bourne N, Reising SF, Stanberry LR. Plant products as topical microbicide candidates: assessment of in vitro and in vivo activity against herpes simplex virus type 2. Antiviral Research. 1999;42(3):219–226. [PubMed] [Google Scholar]

34. Si X, Wang Y, Wong J, Zhang J, McManus BM, Luo H. Dysregulation of the ubiquitin-proteasome system by curcumin suppresses coxsackievirus B3 replication. Journal of Virology. 2007;81(7):3142–3150. [PMC free article] [PubMed] [Google Scholar]

35. Kim HJ, Yoo HS, Kim JC, et al. Antiviral effect of Curcuma longa Linn extract against hepatitis B virus replication. Journal of Ethnopharmacology. 2009;124(2):189–196. [PubMed] [Google Scholar]

36. Kim K, Kim KH, Kim HY, Cho HK, Sakamoto N, Cheong J. Curcumin inhibits hepatitis C virus replication via suppressing the Akt-SREBP-1 pathway. FEBS Letters. 2010;584(4):707–712. [PubMed] [Google Scholar]

37. Divya CS, Pillai MR. Antitumor action of curcumin in human papillomavirus associated cells involves downregulation of viral oncogenes, prevention of NFkB and AP-1 translocation, and modulation of apoptosis. Molecular Carcinogenesis. 2006;45(5):320–332. [PubMed] [Google Scholar]

38. Prusty BK, Das BC. Constitutive activation of transcription factor AP-1 in cervical cancer and suppression of human papillomavirus (HPV) transcription and AP-1 activity in HeLa cells by curcumin. International Journal of Cancer. 2005;113(6):951–960. [PubMed] [Google Scholar]

39. Dutta K, Ghosh D, Basu A. Curcumin protects neuronal cells from japanese encephalitis virus-mediated cell death and also inhibits infective viral particle formation by dysregulation of ubiquitin-proteasome system. Journal of Neuroimmune Pharmacology. 2009;4(3):328–337. [PubMed] [Google Scholar]

40. Tomita M, Kawakami H, Uchihara J-N, et al. Curcumin suppresses constitutive activation of AP-1 by downregulation of JunD protein in HTLV-1-infected T-cell lines. Leukemia Research. 2006;30(3):313–321. [PubMed] [Google Scholar]

41. De R, Kundu P, Swarnakar S, et al. Antimicrobial activity of curcumin against helicobacter pylori isolates from India and during infections in mice. Antimicrobial Agents and Chemotherapy. 2009;53(4):1592–1597. [PMC free article] [PubMed] [Google Scholar]

42. Foryst-Ludwig A, Neumann M, Schneider-Brachert W, Naumann M. Curcumin blocks NF-κB and the motogenic response in Helicobacter pylori-infected epithelial cells. Biochemical and Biophysical Research Communications. 2004;316(4):1065–1072. [PubMed] [Google Scholar]

43. Kundu P, De R, Pal I, Mukhopadhyay AK, Saha DR, Swarnakar S. Curcumin alleviates matrix metalloproteinase-3 and -9 activities during eradication of Helicobacter pylori infection in cultured cells and mice. PLoS ONE. 2011;6(1)e16306 [PMC free article] [PubMed] [Google Scholar]

44. Koosirirat C, Linpisarn S, Changsom D, Chawansuntati K, Wipasa J. Investigation of the anti-inflammatory effect of Curcuma longa in Helicobacter pylori-infected patients. International Immunopharmacology. 2010;10(7):815–818. [PubMed] [Google Scholar]

45. Di Mario F, Cavallaro LG, Nouvenne A, et al. A curcumin-based 1-week triple therapy for eradication of Helicobacter pylori infection: something to learn from failure? Helicobacter. 2007;12(3):238–243. [PubMed] [Google Scholar]

46. Sintara K, Thong-Ngam D, Patumraj S, Klaikeaw N, Chatsuwan T. Curcumin suppresses gastric NF-κB activation and macromolecular leakage in Helicobacter pylori-infected rats. World Journal of Gastroenterology. 2010;16(32):4039–4046. [PMC free article] [PubMed] [Google Scholar]

47. Odds FC. Synergy, antagonism, and what the chequerboard puts between them. Journal of Antimicrobial Chemotherapy. 2003;52(1):p. 1. [PubMed] [Google Scholar]

48. Amrouche T, Noll KS, Wang Y, Huang Q, Chikindas ML. Antibacterial activity of subtilosin alone and combined with curcumin, poly-lysine and zinc lactate against listeria monocytogenes strains. Probiotics and Antimicrobial Proteins. 2010;2(4):250–257. [PubMed] [Google Scholar]

49. Moghaddam KM, Iranshahi M, Yazdi MC, Shahverdi AR. The combination effect of curcumin with different antibiotics against Staphylococcus aureus. International Journal of Green Pharmacy. 2009;3(2):141–143. [Google Scholar]

50. Marathe SA, Kumar R, Ajitkumar P, Nagaraja V, Chakravortty D. Curcumin reduces the antimicrobial activity of ciprofloxacin against Salmonella Typhimurium and Salmonella Typhi. Journal of Antimicrobial Chemotherapy. 2013;68(1):139–152. [PubMed] [Google Scholar]

51. Hatamie S, Nouri M, Karandikar SK, et al. Complexes of cobalt nanoparticles and polyfunctional curcumin as antimicrobial agents. Materials Science and Engineering C. 2012;32(2):92–97. [Google Scholar]

52. Varaprasad K, Mohan YM, Vimala K, Mohana Raju K. Synthesis and characterization of hydrogel-silver nanoparticle-curcumin composites for wound dressing and antibacterial application. Journal of Applied Polymer Science. 2011;121(2):784–796. [Google Scholar]

53. Vimala K, Mohan YM, Varaprasad K, et al. Fabrication of curcumin encapsulated chitosan-PVA silver nanocomposite films for improved antimicrobial activity. Journal of Biomaterials and Nanobiotechnology. 2011;2(1):55–64. [Google Scholar]

54. Karaman M, Fırıncı F, Arıkan Ayyıldız Z, Bahar IH. Effects of Imipenem, Tobramycin and Curcumin on biofilm formation of Pseudomonas aeruginosa strains. Mikrobiyoloji Bulteni. 2013;47(1):192–194. [PubMed] [Google Scholar]

55. Marathe SA, Ray S, Chakravortty D. Curcumin increases the pathogenicity of Salmonella enterica serovar typhimurium in Murine model. PLoS ONE. 2010;5(7)e11511 [PMC free article] [PubMed] [Google Scholar]

56. Tomei L, Altamura S, Paonessa G, De Francesco R, Migliaccio G. HCV antiviral resistance: the impact of in vitro studies on the development of antiviral agents targeting the viral NS5B polymerase. Antiviral Chemistry & Chemotherapy. 2005;16(4):225–245. [PubMed] [Google Scholar]

57. Lemoine M, Nayagam S, Thursz M. Viral hepatitis in resource-limited countries and access to antiviral therapies: current and future challenges. Future Virology. 2013;8(4):371–380. [PMC free article] [PubMed] [Google Scholar]

58. De Clercq E. Strategies in the design of antiviral drugs. Nature Reviews Drug Discovery. 2002;1(1):13–25. [PubMed] [Google Scholar]

59. Jassim SAA, Naji MA. Novel antiviral agents: a medicinal plant perspective. Journal of Applied Microbiology. 2003;95(3):412–427. [PubMed] [Google Scholar]

60. Zorofchian Moghadamtousi S, Hajrezaei M, Abdul Kadir H, Zandi K. Loranthus micranthus Linn.: biological activities and phytochemistry. Evidence-Based Complementary and Alternative Medicine. 2013;2013:9 pages.273712 [PMC free article] [PubMed] [Google Scholar]

61. Dairaku I, Han Y, Yanaka N, Kato N. Inhibitory effect of curcumin on IMP dehydrogenase, the target for anticancer and antiviral chemotherapy agents. Bioscience, Biotechnology and Biochemistry. 2010;74(1):185–187. [PubMed] [Google Scholar]

62. Singh RK, Rai D, Yadav D, Bhargava A, Balzarini J, De Clercq E. Synthesis, antibacterial and antiviral properties of curcumin bioconjugates bearing dipeptide, fatty acids and folic acid. European Journal of Medicinal Chemistry. 2010;45(3):1078–1086. [PMC free article] [PubMed] [Google Scholar]

63. Nabel GJ, Rice SA, Knipe DM, Baltimore D. Alternative mechamisms for activation of human immunodeficiency virus enhancer in T cells. Science. 1988;239(4845):1299–1302. [PubMed] [Google Scholar]

64. Cullen BR, Greene WC. Regulatory pathways governing HIV-1 replication. Cell. 1989;58(3):423–426. [PubMed] [Google Scholar]

65. Mazumder A, Neamati N, Sunder S, et al. Curcumin analogs with altered potencies against HIV-1 integrase as probes for biochemical mechanisms of drug action. Journal of Medicinal Chemistry. 1997;40(19):3057–3063. [PubMed] [Google Scholar]

66. Chauhan G, Rath G, Goyal AK. In-vitro anti-viral screening and cytotoxicity evaluation of copper-curcumin complex. Artificial Cells, Nanomedicine and Biotechnology. 2013;41(4):276–281. [PubMed] [Google Scholar]

67. Kawai C. From myocarditis to cardiomyopathy: mechanisms of inflammation and cell death: learning from the past for the future. Circulation. 1999;99(8):1091–1100. [PubMed] [Google Scholar]

68. Lee C-K, Kono K, Haas E, et al. Characterization of an infectious cDNA copy of the genome of a naturally occurring, avirulent coxsackievirus B3 clinical isolate. Journal of General Virology. 2005;86(1):197–210. [PubMed] [Google Scholar]

69. Si X, McManus BM, Zhang J, et al. Pyrrolidine dithiocarbamate reduces coxsackievirus B3 replication through inhibition of the ubiquitin-proteasome pathway. Journal of Virology. 2005;79(13):8014–8023. [PMC free article] [PubMed] [Google Scholar]

70. Ganem D, Prince AM. Hepatitis B virus infection—natural history and clinical consequences. The New England Journal of Medicine. 2004;350(11):1118–1129. [PubMed] [Google Scholar]

71. Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics, 2002. CA: A Cancer Journal for Clinicians. 2005;55(2):74–108. [PubMed] [Google Scholar]

72. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA: A Cancer Journal for Clinicians. 2011;61(2):69–90. [PubMed] [Google Scholar]

73. Chen C-J, Raung S-L, Kuo M-D, Wang Y-M. Suppression of Japanese encephalitis virus infection by non-steroidal anti-inflammatory drugs. Journal of General Virology. 2002;83(8):1897–1905. [PubMed] [Google Scholar]

74. Fujii M, Niki T, Mori T, et al. HTLV-1 tax induces expression of various immediate early serum responsive genes. Oncogene. 1991;6(6):1023–1029. [PubMed] [Google Scholar]

75. Upendra RS, Khandelwal P, Reddy AHM. Turmeric powder (Curcuma longa Linn.) as an antifungal agent in plant tissue culture studies. International Journal of Engineering Science. 2011;3(11):7899–7904. [Google Scholar]

76. Kim M-K, Choi G-J, Lee H-S. Fungicidal property of Curcuma longa L. rhizome-derived curcumin against phytopathogenic fungi in a greenhouse. Journal of Agricultural and Food Chemistry. 2003;51(6):1578–1581. [PubMed] [Google Scholar]

77. Chowdhury H, Banerjee T, Walia S. In vitro screening of Curcuma longa L and its derivatives sa antifungal agents against Helminthosporrum oryzae and Fusarium solani. Pesticide Research Journal. 2008;20(1):6–9. [Google Scholar]

78. Wuthi-udomlert M, Grisanapan W, Luanratana O, Caichompoo W. Antifungal activity of Curcuma longa grown in Thailand. The Southeast Asian Journal of Tropical Medicine and Public Health. 2000;31(1):178–182. [PubMed] [Google Scholar]

79. Apisariyakul A, Vanittanakom N, Buddhasukh D. Antifungal activity of turmeric oil extracted from Curcuma longa (Zingiberaceae) Journal of Ethnopharmacology. 1995;49(3):163–169. [PubMed] [Google Scholar]

80. Martins CVB, Da Silva DL, Neres ATM, et al. Curcumin as a promising antifungal of clinical interest. Journal of Antimicrobial Chemotherapy. 2009;63(2):337–339. [PubMed] [Google Scholar]

81. Sharma M, Manoharlal R, Puri N, Prasad R. Antifungal curcumin induces reactive oxygen species and triggers an early apoptosis but prevents hyphae development by targeting the global repressor TUP1 in Candida albicans. Bioscience Reports. 2010;30(6):391–404. [PubMed] [Google Scholar]

82. Neelofar K, Shreaz S, Rimple B, Muralidhar S, Nikhat M, Khan LA. Curcumin as a promising anticandidal of clinical interest. Canadian Journal of Microbiology. 2011;57(3):204–210. [PubMed] [Google Scholar]

83. Jianhua W, Hai W. Antifungal susceptibility analysis of berberine, baicalin, eugenol and curcumin on Candida albicans. Journal of Medical Colleges of PLA. 2009;24(3):142–147. [Google Scholar]

84. Khan N, Shreaz S, Bhatia R, et al. Anticandidal activity of curcumin and methyl cinnamaldehyde. Fitoterapia. 2012;83(3):434–440. [PubMed] [Google Scholar]

85. Sharma M, Manoharlal R, Negi AS, Prasad R. Synergistic anticandidal activity of pure polyphenol curcumin i in combination with azoles and polyenes generates reactive oxygen species leading to apoptosis. FEMS Yeast Research. 2010;10(5):570–578. [PubMed] [Google Scholar]

86. Karaman M, Arıkan Ayyıldız Z, Fırıncı F, et al. Effects of curcumin on lung histopathology and fungal burden in a mouse model of chronic asthma and oropharyngeal candidiasis. Archives of Medical Research. 2011;42(2):79–87. [PubMed] [Google Scholar]

87. Dovigo LN, Pavarina AC, Carmello JC, MacHado AL, Brunetti IL, Bagnato VS. Susceptibility of clinical isolates of Candida to photodynamic effects of curcumin. Lasers in Surgery and Medicine. 2011;43(9):927–934. [PubMed] [Google Scholar]

88. Dovigo LN, Pavarina AC, Ribeiro APD, et al. Investigation of the photodynamic effects of curcumin against Candida albicans. Photochemistry and Photobiology. 2011;87(4):895–903. [PubMed] [Google Scholar]

89. Dovigo LN, Carmello JC, de Souza Costa CA, et al. Curcumin-mediated photodynamic inactivation of Candida albicans in a murine model of oral candidiasis. Medical Mycology. 2013;51(3):243–251. [PubMed] [Google Scholar]

90. Tsao S-M, Yin M-C. Enhanced inhibitory effect from interaction of curcumin with amphotericin B or fluconazole against Candida species. Journal of Food and Drug Analysis. 2000;8(3):208–212. [Google Scholar]

91. Kudva AK, Manoj MN, Swamy BN, Ramadoss CS. Complexation of amphoterecin B and curcumin with serum albumin: solubility and effect on erythrocyte membrane damage. Journal of Experimental Pharmacology. 2011;3:1–6. [PMC free article] [PubMed] [Google Scholar]

92. Khalil OAK, de Faria Oliveira OMM, Vellosa JCR, et al. Curcumin antifungal and antioxidant activities are increased in the presence of ascorbic acid. Food Chemistry. 2012;133(3):1001–1005. [Google Scholar]

93. Mohanty C, Das M, Sahoo SK. Emerging role of nanocarriers to increase the solubility and bioavailability of curcumin. Expert Opinion on Drug Delivery. 2012;9(11):1347–1364. [PubMed] [Google Scholar]

94. Kurien BT, Singh A, Matsumoto H, Scofield RH. Improving the solubility and pharmacological efficacy of curcumin by heat treatment. Assay and Drug Development Technologies. 2007;5(4):567–576. [PubMed] [Google Scholar]

95. Bhawana B, Basniwal RK, Buttar HS, Jain VK, Jain N. Curcumin nanoparticles: preparation, characterization, and antimicrobial study. Journal of Agricultural and Food Chemistry. 2011;59(5):2056–2061. [PubMed] [Google Scholar]

96. Shailendiran D, Pawar N, Chanchal A, Pandey RP, Bohidar HB, Verma AK. Characterization and antimicrobial activity of nanocurcumin and curcumin. Proceedings of the International Conference on Nanoscience, Technology and Societal Implications (NSTSI '11); December 2011; IEEE; pp. 1–7. [Google Scholar]

97. Wang Y, Lu Z, Wu H, Lv F. Study on the antibiotic activity of microcapsule curcumin against foodborne pathogens. International Journal of Food Microbiology. 2009;136(1):71–74. [PubMed] [Google Scholar]

98. Wang Y-F, Shao J-J, Zhou C-H, et al. Food preservation effects of curcumin microcapsules. Food Control. 2012;27(1):113–117. [Google Scholar]

99. Hatcher H, Planalp R, Cho J, Torti FM, Torti SV. Curcumin: from ancient medicine to current clinical trials. Cellular and Molecular Life Sciences. 2008;65(11):1631–1652. [PMC free article] [PubMed] [Google Scholar]

100. Gupta SC, Kismali G, Aggarwal BB. Curcumin, a component of turmeric: from farm to pharmacy. Biofactors. 2013;39(1):2–13. [PubMed] [Google Scholar]

A Review on Antibacterial, Antiviral, and Antifungal Activity of Curcumin (2024)
Top Articles
Latest Posts
Article information

Author: Dr. Pierre Goyette

Last Updated:

Views: 5564

Rating: 5 / 5 (50 voted)

Reviews: 81% of readers found this page helpful

Author information

Name: Dr. Pierre Goyette

Birthday: 1998-01-29

Address: Apt. 611 3357 Yong Plain, West Audra, IL 70053

Phone: +5819954278378

Job: Construction Director

Hobby: Embroidery, Creative writing, Shopping, Driving, Stand-up comedy, Coffee roasting, Scrapbooking

Introduction: My name is Dr. Pierre Goyette, I am a enchanting, powerful, jolly, rich, graceful, colorful, zany person who loves writing and wants to share my knowledge and understanding with you.